DOI: http://dx.doi.org/10.18782/2320-7051.7385

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **7 (2):** 86-90 (2019)

Effect of Conventional and Organic Farming Practices on Physical Properties of Vertisols of Bagalkot Region

Ramanandan L. G.^{*} and Hanamantarao Jogan

Department of Soil Science and Agricultural Chemistry, UAS, Dharwad – 580 005 *Corresponding Author E-mail: ramanandanlg@gmail.com Received: 14.02.2019 | Revised: 16.03.2019 | Accepted: 22.03.2019

ABSTRACT

In order to characterize the "Effect of conventional and organic farming practices on soil physico-chemical properties of Vertisol in Northern Karnataka" a field survey was carried out during 2014-2015 in farmers fields of Bagalkot District, which falls in the Northern dry Agroclimatic zone of the Karnataka state. The soil was deep black clayey in nature and neutral to alkaline in reaction with low salt content. The results of the study revealed that soils under organic farming system recorded significantly higher water holding capacity (62.05%), per cent porosity (52.56) and aggregate stability (64.57%) but significantly lower bulk density (1.26 Mg m⁻³) than soils under conventional farming system (61.23, 44.75, 55.10% and 1.46 Mg m⁻³ water holding capacity, per cent porosity, bulk density and aggregate stability, respectively) irrespective of different talukas of Bagalkot district. The soil physical properties varied with soil depths also. The surface soil recorded significantly lesser water holding capacity (52.33%), bulk density (1.13 Mg mm⁻³) and aggregate stability (56.79%), but per cent porosity (57.47) was significantly more. Organic farming practices improved physical properties of soil in both surface and sub-surface depths. Hence, it can be concluded that organic farming practice.

Key words: Organic manure, Green manure intercrop, Bio fertilizers, press-mud and FYM.

INTRODUCTION

Organic farming as a system of farm management and agricultural production, is an in-built recycling capacity for waste accepted by environmental and health conscious people, which can achieve sustainable productivity without the use of artificial external inputs such as chemo-synthetic fertilizers and pesticides. Whereas Conventional Farming, refers to methods of farming in which include the use of synthetic chemical fertilizers, pesticides and herbicides and genetically modified organisms. Conventional farming is contrasted to organic farming as the latter responds to site-specific conditions by integrating cultural, biological, and mechanical practices that foster cycling of resources, promote ecological balance, and conserve biodiversity by the Codex Alimentarius Commission⁶.

Cite this article: Ramanandan, L.G. and Jogan, H., Effect of Conventional and Organic Farming Practices on Physical Properties of Vertisols of Bagalkot Region, *Int. J. Pure App. Biosci.* **7**(2): 86-90 (2019). doi: http://dx.doi.org/10.18782/2320-7051.7385

Int. J. Pure App. Biosci. 7 (2): 86-90 (2019)

Thus, organic farming offers a foresighted sustainable farming system with a viable to alternative to conventional approaches to agriculture. The significant difference in the approach lies in the fact that, in conventional modern farming, chemical fertilizers are used to feed the plants directly, while in organic farming the organic materials are applied to fields to improve soil structure, water holding capacity and to nourish soil life which inturn nourishes plants. Thus, organic farming concentrates on "feeding the soil rather than feeding the plants". Until the introduction of chemical fertilizers in the mid nineteenth century, organic material in the form of FYM or compost were the only recognized source of plant nutrients added to soil⁸. It is the traditional organic manure which was most readily available to the farmers. In India, it can potentially supply approximately 33 Mt of N. P and K per year⁵. The National Academy of Agricultural Sciences projected that 30-35 MT of fertilizer nutrients will be required to meet food grain demand by 2020. Therefore demand will stretch by almost 15 Mt, if requirements of horticulture, plantation, sugarcane, potato, cotton etc., are included, thus making a total N, P and K requirement at 45 Mt. The behaviour of soil under intensive inorganic or organic farming practices is not well studied under irrigated conditions, Farmers, for getting higher yields, use heavy dosages of fertilizers, neglecting regular and adequate application of organic manures over the years. Consequently land loses its organic matter content leading to drastic disturbance in soil physical environment. Now there is growing awareness about soil physical and biological environment, for which organic manures are very much needed. Hence soils put continuously under inorganic fertilizers definitely differ from those put under organics.

MATERIAL AND METHODS

A field investigation was carried out to characterise the soils of sugarcane fields under conventional and organic farming practices in Bagalkot district to study the effect organic and conventional farming practices on yield and quality of sugarcane and also on soil chemical properties. The details of the materials used and the methods adopted in field experiments conducting the and laboratory analysis are presented below.

Location

The observations were recorded from Bagalkot district, which falls in the Northern dry Agroclimatic zone of the Karnataka state and experiences a semi-arid climate. Bagalkot district consists of six talukas viz; Bagalkot, Bilagi, Badami, Hunagund, Mudhol and Jamkhandi. Bagalkot district is bound by Vijayapur in the north, Belgaum in the west, Dharwad in the south and Raichur in the east.

Experimental details

Observations were recorded with two replications during 2014-15 from the fields of five practicing farmers organic and conventional sugarcane cultivation.

		8 8				
SI. No	Particulars	Conventional practice	Organic practice			
01	Varieties	Co-671, Co-94012, Co-8014	Co-8021, Co-86032,			
		(Mahalaxmi), Co-86032	Co-86249, Co-90063,			
		(Nayana), Co-740	Co-94077, Co-95071			
02	Land preparation	Deep ploughing once or twice with disc plough followed	y shallow ploughing three or four times using cultivar			
03	Spacing	1. Adopt minimum row spacing of 90 cm.				
		2. For varieties, the spacing can be increased upto 150 cm between plant to plant 30 to 45 cm spacing is maintained.				
		3. Furrows must be formed at 20 to 30 cm deep.				
04	Organic	Apply recommended dose of chemical fertilizer - NPK	Apply FYM or compost or well decomposed pressmud @ 80 t/ha in furrows, which would supply			
	manure	(250:75:190 kg/ha) + 25 t/ha FYM	280 kg N/ha			
05	Planting	Collect sets from 6 to 8 months old disease free n				
	material	Three buded sets were used	Three buded sets were Used			
06	Set rate and planting	Per hectare area 25000 to 35000 three budded sets require	d. Similarly, per hectare area 60000 to 75000 two budded sets Required			
07	Green	Along with sowing green manure crop, greengram,	Sow green manure crop like dhiancha or sunnhemp on one side of the ridges on third or fourth day			
	manure	soybean, cowpea, blackgram are practiced (60 kg seeds	after planting sugarcane and raise it as an intercrop with sugarcane. Harvest and in situ incorporate			
	intercrop	required per ha)	the intercrop around 45 days after transplanting.			
08	Weed	Weedicides like atrazine – add	Hand hoeing and weeding at 30, 60 and 90 days after planting (DAT), follow only non-chemical			
	management	3.3 g of 50% wettable powder in	weed management technologies like hand weeding and mechanical weed control methods.			
	-	1 litre water and spray				
09	Biofertilizers		Apply 5 kg each of Azospirillum and			
			phosphobacteria respectively on 30 and 60 DAT of sugarcane, mix the biofertilizers thoroughly			
			with 500 kg FYM to increase the bulkiness and apply.			
10	Cane yield	85 to 90 t/ha	90 to 100 t/ha			

Table 1: Distinguishing between conventional and organic sugarcane cultivation practices

Copyright © March-April, 2019; IJPAB

ISSN: 2320 - 7051

The pH of soil was determined in 1: 2.5 soils to water suspension after stirring the samples intermittently for half an hour using a Systronics direct digital 331 pH meter. Electrical conductivity of the soil was determined in the supernatant of 1:2.5 soils to water suspension by using Systronics direct digital conductivity meter-304¹⁷. Aggregate stability by Yoder wet sieve method. Particle size analysis by Hydrometer method¹⁴. Bulk density by Clod method³. Soil porosity by percentage method and Maximum water holding capacity by Keen's cup method¹⁴. The data collected from the experimental field and laboratory analysis were subjected to statistical analysis by adopting Fischer's method of analysis of variance (ANOVA) as outlined by Gomez and Gomez⁷ following Randomized Block Design (RBD) with factorial concept for soil, cane yield and quality parameters. The level of significance used in 'F'and't' test was P=0.05. Critical difference was calculated wherever 'F' test was found significant.

RESULTS AND DISCUSSION

The results showed that, no significant difference existed between the organic and conventional farming systems (Table-3) with respect to maximum water holding capacity. However higher water holding capacity (62.05%) was recorded in organic farming practice as compared to conventional farming system (61.23%). Water holding capacity differed significantly due to soil depths (52.33%) for 0-20 cm and (70.95%) in 20-40 cm depths. The increase in maximum water holding capacity of soils was due to organic farming system compared to conventional farming system might be due to the application of organic manures like vermicompost and FYM which might have increased WHC. Similar results were also reported by Jadhav et al.¹². Build-up of soil organic matter and improvement in soil structure by application of residues and FYM were responsible for significant increase in water holding capacity of soil 15 .

Significant difference existed with respect to bulk density between the organic

conventional and farming systems. Significantly lower bulk density (1.26 Mg m^{-3}) was recorded (table-3) due to organic farming practice as compared to conventional farming system (1.33 Mg m⁻³). Bulk density of soil differed significantly due to soil depths and recorded 1.13 Mg m⁻³ for 0-20 cm and 1.46 Mg m⁻³ in 20-40 cm depths. Significant difference existed between organic and conventional farming systems with respect to The reduction in bulk per cent porosity. density could be due to better soil structure as evidenced from increase in water stable aggregates. Sharma *et al.*¹⁵ attributed the reduction in bulk density in residue and FYM incorporated soils to increase of soil organic matter and better soil structure. Srikanth et al.¹⁸ also observed a significant decrease in bulk density of soil amended with compost compared to the inorganic fertilizer. A decrease in bulk density due to incorporation of FYM, vermin compost and crop residue was also reported by Bhatia and Shukla² Pikul and Allmarks¹³ Chenkai⁴ Bellakki and Badanur¹ and Itnal¹¹. Significantly higher porosity (52.56%) was recorded in organic farming system as compared to conventional farming system (44.75%). The per cent porosity of soil differed significantly due to soil depths and values recorded were 57.47 per cent for 0-20 cm and 39.84 per cent for 20- 40 cm depths. Parallel trend was noticed in all the talukas of Bagalkot district. Non significant difference was observed among the different talukas of Bagalkot district. Results directed that, significant difference existed with respect to aggregate stability between the organic and conventional farming systems. Significantly highest aggregate stability (62.38%) was recorded (table-3) in organic farming practice as compared to conventional farming system (55.10%). Aggregate stability of soil also significantly differed with soil depths and the values were 56.45 per cent for 0-20 cm and 61.02 per cent for 20-40 cm depths. The improvement in aggregate stability of soils under organic farming systems could be attributed to the humic and fulvic substances released during decomposition of organic

Int. J. Pure App. Biosci. 7 (2): 86-90 (2019)

manures which bind the soil particles to form better size aggregates. Formation of larger sized water stable aggregates under long-term application of organic manures was also observed by Singh¹⁶. A considerable increase in water stable aggregates due to incorporation

05

06

of organic manure was noticed earlier by Havanagi and Mann⁹. Hirekurubar¹⁰ observed positive correlation between per cent aggregate stability and organic carbon in Vertisols of North Karnataka.

54.00

44.00

Sl no.	Properties	Values
01	pH (1:2.5)	7.27
02	EC (1:2.5)	0.25
03	Bulk density (Mg m ⁻³)	1.10
04	MWHC (%)	58.00
0.7	Per cent water stable aggregates	- 4 00

Table 2: Initial Soil properties before adopting conventional and organic farming practices

 % Porosity
 4

 Note: each values average of five field data

(> 0.25 mm)

Table 3: Effect of conventional and organic farming systems on physical properties of soil in different talukas of Bagalkot district

talukas of Dagaikot uistrict										
Treatments	MWHC (%)	Bulk density (Mg m ⁻³)	% Porosity	Per cent water stable aggregates (> 0.25 mm)						
Farming systems										
F1 : Organic	62.05	1.26	52.56	62.38						
F2 : Conventional	61.23	1.33	44.75	55.10						
SEm±	1.00	0.01	0.35	0.37						
CD (p=0.05)	NS	0.03	1.02	1.07						
Soil depths										
D1 : 0-20 cm	52.33	1.13	57.47	56.45						
D2 : 20-40 cm	70.95	1.46	39.84	61.02						
SEm±	1.00	0.01	0.35	0.37						
CD (p=0.05)	2.94	0.03	1.02	1.07						

Note: each values average of five field data

CONCLUSION

A survey was conducted on characterization of sugarcane growing soils under conventional and organic farming practices in Bagalkot district of northern Karnataka. Surface and subsurface soil samples were collected from farmers' fields who practiced organic farming for the last six years in Bagalkot district. Further soil samples were also collected from those fields which are under conventional farming system (inorganics). These samples were analysed for various physical, chemical and biological properties. Water holding capacity, bulk density and aggregate stability of sub surface layer was significantly higher

Copyright © March-April, 2019; IJPAB

than the surface layer, except percent porosity which is more at surface layer. Organic farming practices improved physical properties of soil in both surface and sub-surface depths. Physical properties of soils were comparatively superior in organic farming practices than in conventional farming practices.

REFERENCES

 Bellakki, M. A. and Badanur, V. P., Effect of crop residues incorporation on physical and chemical properties of a Vertisol and yield of sorghum. *J. Indian Soil Sci.*, 42(1): 533-535 (1994).

- Bhatia, K. S. and Shukla, K. K., Effect of continuous application of fertilizers and manure on some physical properties of eroded alluvial soil. *J. Indian Soil Sci*, **30**: 33-36 (1982).
- Black, C. A., Methods of Soil Analysis Part – I, Agronomy Monograph 9. American Soc. Agron., Madison, Wisconsin, USA (1965).
- Chenkai, M. L., Vetiver as a live bund to control runoff and soil loss. *Vetiver Newsletter*, **10**: 15-16 (1993).
- Gaur, A. C., Neelakanthan, S. and Daragan, K. S., Organic manures, Indian Council of Agricultural Research, New Delhi, p. 159 (1992).
- GOI, Report of the Working Group on Organic and Biodynamic Farming for the 10th Five Year Plan, Planning Commission, Government of India, New Delhi, September (2001).
- Gomez, K. A. and Gomez, A. A., *Statistical Procedures for Agricultural Research*. John Willey and Sons, New York, USA (1984).
- Hauck, F. W., Organic recycling to improve soil productivity. Organic materials and soil productivity in the Near East. *FAO Soil Bull.*, 4: 10-15 (1982).
- Havanagi, G. V. and Mann, H. S., Effect of rotations, continuous application of manures and fertilizers on soil properties under dry farming conditions. *J. Indian Soc. Soil Sci.*, 18: 45-50 (1970).
- Hirekurubar, B. M., Investigation of physical properties of Vertisols derived from different parent materials. *M. Sc.* (*Agri.*) *Thesis*, Univ. Agric. Sci., Dharwad, Karnataka, India (1989).

- Itnal, C. J., Fertility management in dry land agriculture principles and practices in proceedings of short summer course on role of organics in sustaining soil fertility and crop productivity.June 9-18, Directorate of Research, *Univ. Agric. Sci.* Dharwad, pp. 274-290 (1997).
- Jadhav, S. B., Jadhav, M. B., Joshi, V. A. and Jagatap, P. B., Organic farming in the light of reduction in use of chemical fertilizers. *Proc. 43rd Annu. Deccan Sugar Technol. Asso. Organic Carboniation, Pune Part I*, pp. SA53-SA65 (1993).
- Pikul, J. L. and Allmarks, R. R., Physical and chemical properties of Haploxeroll after 50 years of residue management. *Soil Sci. Society American J.*, **50**: 214-219 (1986).
- 14. Piper, C. S., Soil and Plant Analysis, *Hans Publishers*, Bombay, India (2002).
- Sharma, M. P., Bali, S. V. and Gupta, D. K., Crop yield and properties of Inceptisol as influenced by residue management under rice-wheat cropping sequence. *J. Indian Soil Sci.*, 48(3): 506-509 (2000).
- Singh, S. S., Micronutrients research in soils and plants in India. *Soil Sci.*, **98:** 383-387 (1964).
- Sparks, D. L., Page, A. L., Helmake, P. A., Loppert R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Summer, M. E., *Methods of Soil Analysis*, Part 3, pp. 610-624 (1996).
- Srikanth, K., Srinivasamurthy, C. A., Siddaramappa, R. and Parama, V. R., Direct and residual effect of enriched composts, FYM, vermicompost and fertilizers on properties of an Alfisols. *J. Indian Soc. Soil Sci.*, **48(3):** 496-499 (2000).